BIRZEIT UNIVERSITY
Faculty of Engineering and Technology
Electrical and Computer Engineering Department

ENCS234, Digital Systems

Date: Thursday , 09/06/2016
Time: 11:00-13:30
Rooms: KNH625
Total points: 100

	Khader Mohammad	M, W	14:00-15:20
Instructors:	Mohammed Hussein	T, R 08:00-09:20	
	Ahmad Alsadeh	S, M, W 10:00-10:50	
		S, M, W 13:00-13:50	

Name: \qquad ID: \qquad

Question 1: Multiple choices are worth 2 points each. ($\mathbf{3 0}$ points)
(ABET Outcome a: Ability to apply mathematics, science and engineering principles.)

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	7	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$

1) Converting $(153)_{10}$ to base 8 yields which of the following results?
a. 107
b. 132
c. 701
d. 231
2) 10100 is the two's complement representation of:
a. +12
b. -12
c. -20
d. +20
3) Simplification of the Boolean expression $A B+A B C+A B C D+A B C D E+A B C D E F$ yields which of the following results?
a. ABCDEF
b. AB
c. $\mathrm{AB}+\mathrm{CD}+\mathrm{EF}$
d. $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}$
4) The shown circuit can be implemented using a minimum of :
a. 3 NAND Gates
b. 4 NAND Gates
c. 5 NAND Gates

d. 4 NAND Gates and 1 NOR Gate

5) What is the output of the following circuit? a. AB b. $\mathrm{A}+\mathrm{B}$ c. $A^{\prime} \mathrm{B}^{\prime}+\mathrm{AB}$ d. $A^{\prime} B+A B^{\prime}$	
6) Identify the function which generates the K-map shown a. $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum(0,2,4,7)$ b. $\quad F(A, B, C)=\sum(\mathbf{1 , 3 , 5 , 6})$ c. $F(A, B, C)=\sum(3,4,5,6)$ d. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Pi(1,3,5,7)$	
7) Identify the most simple Product of Sums (POS) expression which generates the K-map show a. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\left(A+C^{\prime}\right)(A+B+C)$ b. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=(A+B)\left(B+C^{\prime}\right)$ c. $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C})=\left(\boldsymbol{A}^{\prime}+\boldsymbol{B}^{\prime}\right)\left(\boldsymbol{A}^{\prime}+\boldsymbol{C}\right)\left(\boldsymbol{B}^{\prime}+\boldsymbol{C}\right)$ d. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\left(A^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C\right)$	
8) Identify the simplest expression from the K-map shown. a. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{BC}^{\prime}+\mathrm{BCD}^{\prime}+\mathrm{AC}^{\prime} \mathrm{D}^{\prime}$ b. $F(A, B, C, D)=B C^{\prime}+B C D^{\prime}+A B^{\prime} C^{\prime} D^{\prime}$ c. $F(A, B, C, D)=A D+B C D^{\prime}+C D$ d. $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\mathbf{B C}^{\prime}+\mathbf{B D}^{\prime}+\mathbf{A C}^{\prime} \mathbf{D}^{\prime}$	
9) The circuit has the same functionality a. XNOR b. XOR c. NAND d. NOR	

10) For the shown multiplexer, the Boolean function: a. $F=x^{\prime} y+x^{\prime} z+y z$ b. $F=x y+x z+y z$ c. $F=x y^{\prime}+x z+y^{\prime} z$ d. $F=x y+x z^{\prime}+y z^{\prime}$	
11) In the shown circuit, given " X " is a 3-bit binary number $\left(\mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0}\right)$: a. $\quad \mathrm{F}=1$ when " X " is less than 4 b. $F=1$ when " X " is greater than 4 c. $F=1$ when " X " is an even number d. $\mathrm{F}=1$ when " X " is an odd number	
12) In the shown circuit, given " X " is a 2-bit binary number ($x_{l} x_{0}$): a. \quad Sum $=X$ b. \quad Sum $=2 X$ c. Sum $=2 \mathbf{X}+1$ d. $S u m=2 X+2$	
13) The sequential circuit below yields an output sequence of $\mathrm{Z}=$ 11011111 when you apply the input sequence $\mathrm{X}=01101010$. What is the starting state of the JK Flip-Flop? a. $\mathrm{A}, \mathrm{A}^{\prime}=0,0$ b. $\mathrm{A}, \mathrm{A}^{\prime}=0,1$ c. $\mathbf{A}, \mathrm{A}^{\prime}=\mathbf{1 , 0}$ d. $\mathrm{A}, \mathrm{A}^{\prime}=1,1$	

14) A Universal Shift Register, USR, is connected as shown. $\mathrm{S}_{1}=$ $1, \mathrm{~S}_{0}=1$ select load operation. Initially $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=1010$. After 2 clock cycles: a. $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=0000$ b. $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=1111$ c. $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=1001$ d. $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=1010$					
15) For the Given State Table: a. States A and B are equivalent	Present State	Next State		Output	
b. States A and D are equivalent		$x=0$	$x=1$	$x=0$	$x=1$
	A	B	D	0	1
c. States C and D are equivalent	B	A	B	1	1
d. States C and E are equivalent	C	E	A	0	0
	D	B	D	0	1
	E	D	C	1	0

Question 2 (15 points)

A Mealy machine has one input X and one output Z . Given the following next-state table, use the triangular table provided below to minimize the number of states (use the implication chart method).

| Present
 State | Next State | | Output Z | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{X = 0}$ | $\mathbf{X = 1}$ | $\mathbf{X = 0}$ | $\mathbf{X = \mathbf { 1 }}$ |
| S_{0} | $\mathrm{~S}_{4}$ | $\mathrm{~S}_{1}$ | 0 | 1 |
| $\mathrm{~S}_{1}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | 1 | 0 |
| $\mathrm{~S}_{2}$ | $\mathrm{~S}_{5}$ | $\mathrm{~S}_{0}$ | 1 | 0 |
| $\mathrm{~S}_{3}$ | $\mathrm{~S}_{4}$ | $\mathrm{~S}_{5}$ | 0 | 1 |
| $\mathrm{~S}_{4}$ | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{5}$ | 1 | 0 |
| $\mathrm{~S}_{5}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{3}$ | 1 | 0 |

Present state	Next state		Output Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
$\mathrm{~S}_{0}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{1}$	0	1
$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	1	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{0}$	1	0
$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	0	1
$\mathrm{~S}_{4}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{5}$	1	0
$\mathrm{~S}_{5}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	1	0

$$
\begin{array}{ll}
\mathrm{g} 0: & \{\mathrm{S} 0, \mathrm{~S} 3\} \\
\mathrm{g} 1: & \{\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 5\} \\
\mathrm{g} 2: & \{\mathrm{S} 4\} \\
\mathrm{g} 3
\end{array}
$$

Present state	Next state		Output Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
g 0	g 2	g 1	0	1
g 1	g 1	g 0	1	0
g 2	g 1	g 1	1	0

Question 3 (20 points) (ABET Outcome c: Ability to design a system, component, or process to meet desired needs.)
Design the sequential circuit specified by the state diagram of Fig. Q2b using T flip-flops. ($\mathbf{2 0}$ points)

Present State				Input	Next State		Flip-flop Inputs		
A	B	C	x	A	B	C	T_{A}	T_{B}	T_{C}
0	0	0	0	0	0	1	0	0	1
0	0	0	1	0	1	0	0	1	0
0	0	1	0	0	1	0	0	1	1
0	0	1	1	0	1	1	0	1	0
0	1	0	0	0	1	1	0	0	1
0	1	0	1	1	0	0	1	1	0
0	1	1	0	1	0	0	1	1	1
0	1	1	1	1	0	1	1	1	0
1	0	0	0	1	0	1	0	0	1
1	0	0	1	1	1	0	0	1	0
1	0	1	0	1	1	0	0	1	1
1	0	1	1	1	1	1	0	1	0
1	1	0	0	1	1	1	0	0	1
1	1	0	1	0	0	0	1	1	0
1	1	1	0	0	0	0	1	1	1
1	1	1	1	0	0	1	1	1	0

$\mathrm{T}_{\mathrm{C}}=\mathrm{x}$,

x

Question 4 (20 points)

a) Using the counter shown below and logic gates design a counter that counts in the sequence $3,4,5,6,7$, $8,9,10,11,12,3, \ldots$ Connect all unused inputs. The counter may cycle through several unwanted states before settling into the final count sequence. Q_{3} is the most significant bit of the counter output. ($\mathbf{1 0}$ points)

Function Table for the Counter					
$\boldsymbol{C L R}$	$\boldsymbol{C L K}$	$\boldsymbol{L D}$	$\boldsymbol{C o u n t}$	Function	
0	x	x	x	Clear to 0	
1	\uparrow	1	x	Load inputs	
1	\uparrow	0	1	Count next binary state	
1	\uparrow	0	0	No change	

a) An incomplete schematic of a down-counter is shown below. This design uses T flip-flops as the internal storage. You are asked to finish up this design by filling in all the boxes. Each box can only contain a direct wire or exactly one gate which must belong to the cell library \{AND, OR, NAND, NOR, XOR, XNOR, inverter\}. (10 points)

Question 5 ($\mathbf{1 5}$ points) (ABET Outcome e: Ability to identify, formulate and solve engineering problems.)
a. Write a Verilog description for the MUX2x1 (5 points)
b. Write a Verilog description for the DFF ($\mathbf{5}$ points)
c. Structurally build the Circuit in the figure ($\mathbf{5}$ points)

